Historical Multilingual and Monolingual ByT5 Models. Following languages are currently covered:
More details can be found in our GitHub repository.
We test our pretrained language models on various datasets from HIPE-2020, HIPE-2022 and Europeana. The following table shows an overview of used datasets.
Language | Dataset | Additional Dataset |
---|---|---|
English | AjMC | - |
German | AjMC | - |
French | AjMC | ICDAR-Europeana |
Finnish | NewsEye | - |
Swedish | NewsEye | - |
Dutch | ICDAR-Europeana | - |
Current best models:
Model | English AjMC | German AjMC | French AjMC | Finnish NewsEye | Swedish NewsEye | Dutch ICDAR | French ICDAR | Avg. |
---|---|---|---|---|---|---|---|---|
hmbyt5/byt5-small-english |
85.65 ± 1.21 | 87.27 ± 0.50 | 84.44 ± 0.79 | |||||
hmbyt5-preliminary/byt5-small-english-german |
85.74 ± 0.72 | 87.45 ± 0.67 | 84.23 ± 0.65 | |||||
hmbyt5-preliminary/byt5-small-english-german-french |
85.61 ± 0.96 | 87.24 ± 0.76 | 84.39 ± 0.68 | |||||
hmbyt5-preliminary/byt5-small-english-german-french-finnish |
85.30 ± 1.14 | 87.37 ± 0.53 | 84.12 ± 0.42 | |||||
hmbyt5-preliminary/byt5-small-english-german-french-finnish-swedish |
85.40 ± 0.78 | 87.12 ± 0.19 | 84.41 ± 0.34 | |||||
hmbyt5-preliminary/byt5-small-english-german-french-finnish-swedish-dutch |
85.51 ± 0.68 | 87.58 ± 0.39 | 84.39 ± 0.83 | 55.46 ± 1.99 | 73.38 ± 2.45 | 84.80 ± 0.44 | 75.97 ± 0.55 | |
hmbyt5-preliminary/byt5-small-multilingual-4g |
83.49 ± 0.96 | 87.65 ± 0.63 | 84.16 ± 0.90 | |||||
hmbyt5-preliminary/byt5-small-multilingual-4g-2e |
83.86 ± 0.61 | 87.54 ± 0.19 | 84.29 ± 0.41 | |||||
hmbyt5-preliminary/byt5-small-multilingual-4g-3e |
83.49 ± 0.99 | 87.38 ± 0.53 | 84.30 ± 0.51 | |||||
hmbyt5-preliminary/byt5-small-historic-multilingual-flax |
83.28 ± 1.67 | 86.98 ± 0.71 | 83.49 ± 1.06 | 76.96 ± 1.58 | 78.80 ± 1.89 | 86.47 ± 0.79 | 77.43 ± 0.51 | |
hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax |
84.91 ± 0.86 | 88.02 ± 0.35 | 84.78 ± 0.75 | 77.77 ± 1.83 | 79.94 ± 0.60 | 86.85 ± 0.91 | 77.45 ± 0.54 |
More recent results on more datasets can be found in the hmLeaderboard
.
We thank Luisa März, Katharina Schmid and Erion Çano for their fruitful discussions about Historical Language Models.
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC). Many Thanks for providing access to the TPUs ❤️